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Introduction. Genetic origin of mitochondrial respiratory chain protein
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Mitochondrial diseases : respiratory chain defect
1) Respiratory chain enzyme deficiency
Deficiency of one specific complex

Combined deficiency

Regulation

Prevalence of mitochondrial diseases
1/5000 births

Wide and complex clinical presentation
Neuromuscular, cardiac, hepatic, renal ...
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An electron micrograph depicting the classic view of mitochondria
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II. General presentation - Material and Methods

Protein synthesis coded by mtDNA needs transfert RNA (RNA). To be functional, tRNA go through chemical modifications by enzymes encoded by nuclear genes. My laboratory has identified two patients from indepedant families with the same tRNA mutation
and a heterozygous mutation of a nuclear gene coding for a tRNA modification enzyme.
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2) Mutation of genes involved in respiratory chain
Respiratory chain profein

16.5 Kb

13 subunits of respiratory chain

2 ribosomal RNA
22 transfert RNA

all other proteins are encoded by nuclear genes
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Transmission modes described
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Mitochondrial diseases are metabolic diseases due fo the respiratory chain defect. Mutations responsible for mitochondrial diseases touch nuclear genes or mitochondrial DNA (miDNA). In children,
nuclear mutations are usually recessive. My laboratory at Imagine Institute has evidences suggesting in some families a complex heredity of a coexisting paternal mutation in a nuclear gene and maternal mutation in mtDNA.

My M2 project will focus on two independent families in which a child has a heterozygous mutation in a nuclear gene coding for an enzyme modifying a mitochondrial transfer RNA (tRNA) and a mtDNA mutation in the genes
TRITT and MTO1 coding for this mitochondrial tRNA. I will use fibroblasts of those patients with a respiratory chain defect to surexpress normal complementary DNA (cDNA). I will then use fibroblasts of their asymptomatic
parents to surexpress mutated cDNA.
Biochemical analysis of the respiratory chain in different cell lines surexpressing cDNA will be performed to demonstrate that the nuclear mutations are indeed deleterious and therefore verify a digenism hypothesis.
Association of a nuclear gene mutation and a mtDNA mutation causing a disease, a new transmission mode ?
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' MTO1 are predicted to be deleterious. Recessive mutations of both genes have been reported in other patients.

in tRNA Tryptophane Trp (MT-TW, m.5542C>T) (Fig. A) and is homoplasmic meaning that 100% of mtDNA is mutated in both patients and in their mothers.
neterozygous mutation fatherly inherited of TRIT1 (c.174+3A>G) coding a tRNA isopentenyliransferase adding an isopentenyl groupe in position 37 of MT-TW.
neterozygous mutation fatherly inherited of MTOT (c.346(>T), nuclear gene known to be useful in modifications of tRNA.
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Figure A. Localization of tDNA Tryptophane mutation (MT-TW, mt, 5542C>T) coded by mtDNA, identical in both families. A37 represents Adenine modified by the addition of an isopentenyl group by TRITI. B. Validation strategy of TRITI or MTO1 mutations
(only TRITT is represented on this figure). n : normal, mut : mutated, cDNA: complementary DNA, (R : respiratory chain.

Fibroblasts of both patients have a respiratory chain (RC) deficit. We will use phenotyping and Western Blot of TRITT or MTOT and other RC proteins coded by mtDNA. RC assemblage will be analyzed in BN-PAGE (Blue Native Poly Acrylamide Gel Electrophoresis).
My laboratory has already found abnormal results that will be confirmed and completed during my internship. Fibroblasts of their asymptomatic parents are available. We will also analyze Western Blot and BN-PAGE. We hypothesized that their RC s functional.
Validation of nuclear mutation in TRIT1 in Family 1

In Family 1, the mutation (c.174+3A>G) in TRIT1 is predicted to modify splicing of the first exon. We will verify this hypothesis using patients’ fibroblasts RNA extraction, reverse transcription, amplification and sequencing. Normal cDNA of TRIT1 will be cloned in
a lentiviral vector (pD2109-CMV) and transducted in the patients’ fibroblasts (Fig. B). Qur hypothesis is that the heterozygous TRIT1 nuclear mutation is causing RC deficit only when combined to homoplasmic MT-TW mutation. Our hypothesis will be validated if

RC functions normally after surexpression of normal ¢DNA TRITI.
Simultaneously, we will use asymptomatic father’s fibroblasts to surexpress mutated cDNA TRIT1. Qur hypothesis is that TRIT] nuclear mutation is deleterious but recessive : pathogenic only when homozygous. Surexpression using transduction of mutated (DNA
TRITT in father’s fibroblasts will lead to RC deficit. After transduction, RC phenotyping will be evaluated using western blot and  BN-PAGE.
Validation of mtDNA mutation in MT-WT in Family 1 and Family 2

Mothers’ fibroblasts are homoplasmic for the muta
will surexpress both mutated and normal <DNA TRI
with mutation in TRIT1 is causing a RC defect.

Validation of nuclear mutation in MTO1 in Family 2

An identical approach will be used in Family 2 with maternal mtDNA mutation in MT-TW and paternal heterozygous mutation in MTO1.
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Mitochondrial diseases are characterized by a huge clinical and genetic heterogeneity and the mitochondrial and nuclear disease causing genes

have been identified in only 20% of cases.
Moreover, there is almost no therapy for these devastating diseases.

Therefore our objectives are :
1. to identify new nuclear genes responsible for mitochondrial dysfunction in human for a better understanding of its heterogeneity,
2. to decipher the physiopathology of these diseases,
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3. to develop gene therapy for some of them in mouse models,
4. to improve our understanding on the replication of mitochondrial DNA during embryo-fetal development.

Project planning :

months

Phenotyping of fibroblasts

Western blot

BN-PAGE

Validation of mutations

Cloning normal and mutated cDNA

Transduction of fibroblasts

Analyse of phenotype

Conclusion and writting

jon in MT-WT and have no mutation in TRIT1. Surexpression using transduction of mutated cDNA TRIT1 in mothers' fibroblasts will lead to RC deficit. To be in close conditions corresponding to heterozygotes, we
1 (Fig. B). After transduction, RC phenotyping will be evaluated using western blot and BN-PAGE. Our hypothesis will be validated if there is a RC deficit, demonstrating that combination of mutation in MT-WT
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