

LM Genetica e Biologia molecolare nella Ricerca di Base e Biomedica aa 2014/2015

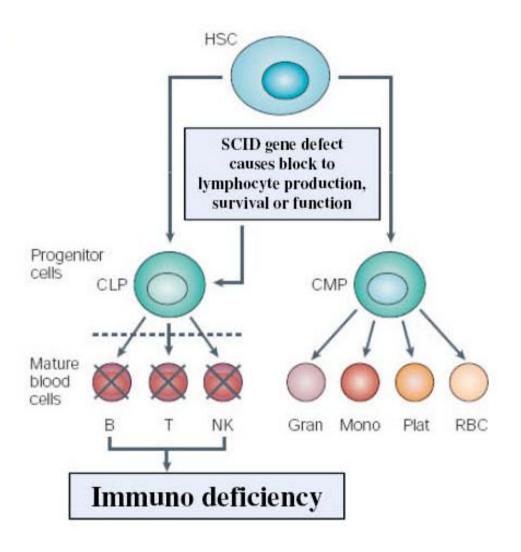
AM

GENTE EDTTING

Gene Therapy

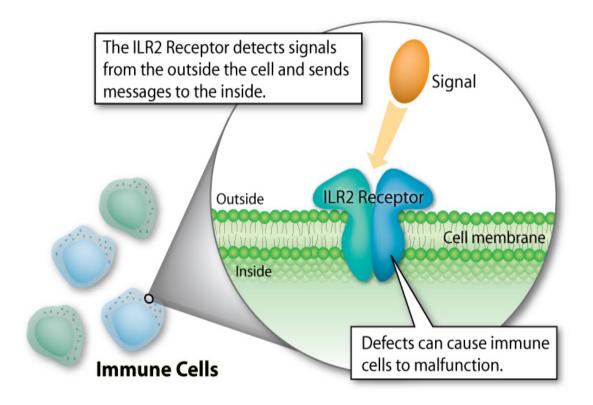
Prof. Isabella Saggio

Students: Del Giudice Simona Parisi Sofia Fioretti Elena Larivera Simone


Tutor La Torre Mattia

SCID "Severe Combined Immunodeficiency"

adapted from: http://www.geneticsandsociety.org/article.php?id=3840


Group of rare and lethal conditions in which the infants die from an array of infections associated with a lack of lymphocytes in the blood.

X-Linked SCID (50% of all SCID cases)

X- SCID IS CAUSED BY INACTIVATING MUTATIONS IN IL2RG GENE

absence of signal cytokine activation

adapted from: http://learn.genetics.utah.edu/content/disorders/singlegene/scid/

IL2RG mutant

• IL2RG gene mapped to chromosome Xq13.1

• IL2RG gene encodes the interleukin 2 receptor common gamma chain

• gamma c = common subunit of different interleukin receptors involved in growth and differentiation of lymphocytes.

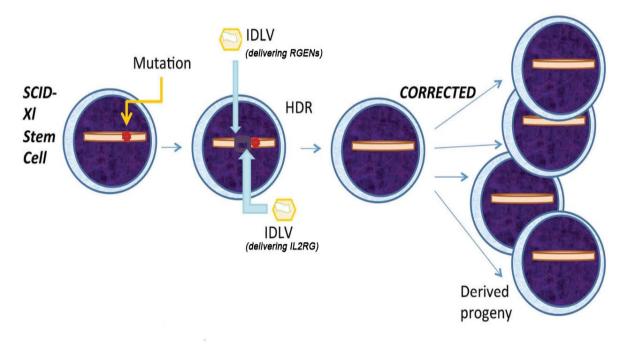
1°Gene Therapy clinical trial for X-SCID

10 children were treated with Ex vivo gene therapy. Transduction of CD34+ bonemarrow cells, using MoMLV for delivering wt IL2RG gene.

Genotoxicity of gamma retroviral integration into the genome

Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1

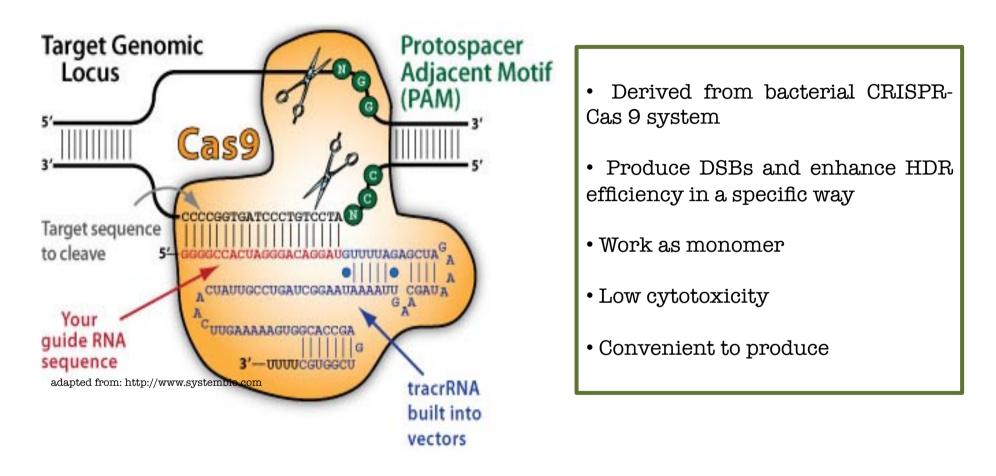
Salima Hacein-Bey-Abina,^{1,2} Alexandrine Garrigue,² Gary P. Wang,³ Jean Soulier,⁴ Annick Lim,⁵ Estelle Morillon,² Emmanuelle Clappier,⁵ Laure Caccavelli,¹ Eric Delabesse,⁶ Kheira Beldjord,^{7,8} Vahid Asnafi,^{7,8} Elizabeth MacIntyre,^{7,8} Liliane Dal Cortivo,¹ Isabelle Radford,⁸ Nicole Brousse,⁹ François Sigaux,⁴ Despina Moshous,¹⁰ Julia Hauer,² Arndt Borkhardt,¹¹ Bernd H. Belohradsky,¹² Uwe Wintergerst,¹² Maria C. Velez,¹³ Lily Leiva,¹³ Ricardo Sorensen,¹³ Nicolas Wulffraat,¹⁴ Stéphane Blanche,¹⁰ Frederic D. Bushman,³ Alain Fischer,^{2,10} and Marina Cavazzana-Calvo^{1,2}


2008. J Clin Invst 118(9):3132.

Main issue: Insertional Mutagenesis

OUR PROPOSAL

To overcome the insertional mutagenesis we propose:

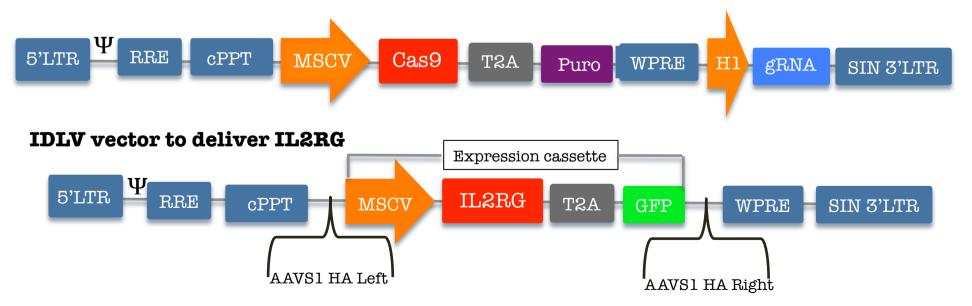

Using gene editing tool RGENs (RNA guided engineered nucleases) to reach site-specific integration of IL2RG wt gene into "safe harbor" (AAVS1 locus) in human HSCs.

Transduction of X-SCID hHSCs with IDLVs vectors for delivering wild-type IL2RG gene and Cas9/Crispr system.

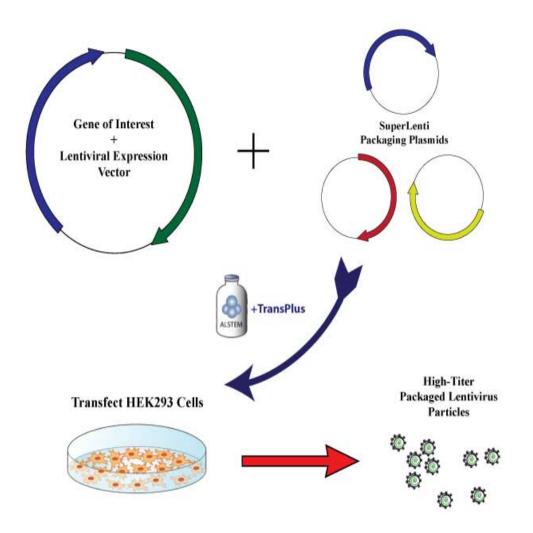
Cas9/CRISPR system allows a site-specific integration of the therapeutic gene in AAVS1 locus to **rescue immune system function.**

RNA - guided engineered nucleases (RGENs)

gRNA directs Cas9 nuclease on a 20 bp complementar DNA sequence. Cas9 perfoms DSBs that trigger endogenous DNA repair system resulting in a targeted genome modification.


IDLVs VECTORS

FEATURES


• HIV-1 based lentiviral vector (third generation) carrying a class I IN mutation in the D64V region of the catalytic domain, resulting in an **inhibition of vector's integration**.

- Possibility to provide a **site specific integration** in the genome **through RGENs**.
- Possibility of use in ex vivo experiment without forcing cells replication.

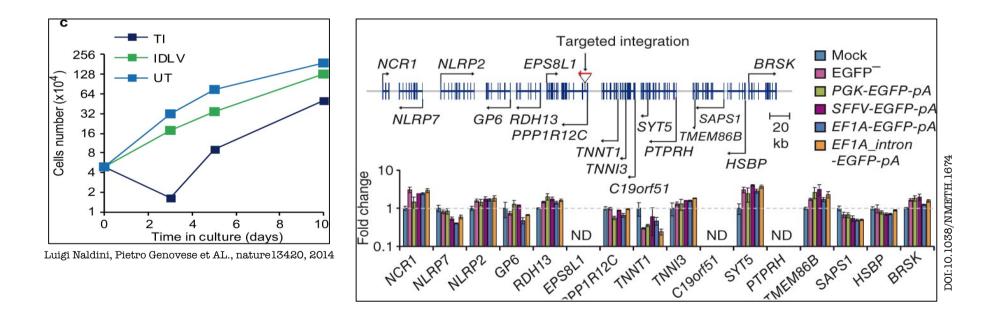
IDLV vector to deliver Cas9-CRISPR system

IDLVs PRODUCTION

Cells HEK 293T are transiently transfected by:

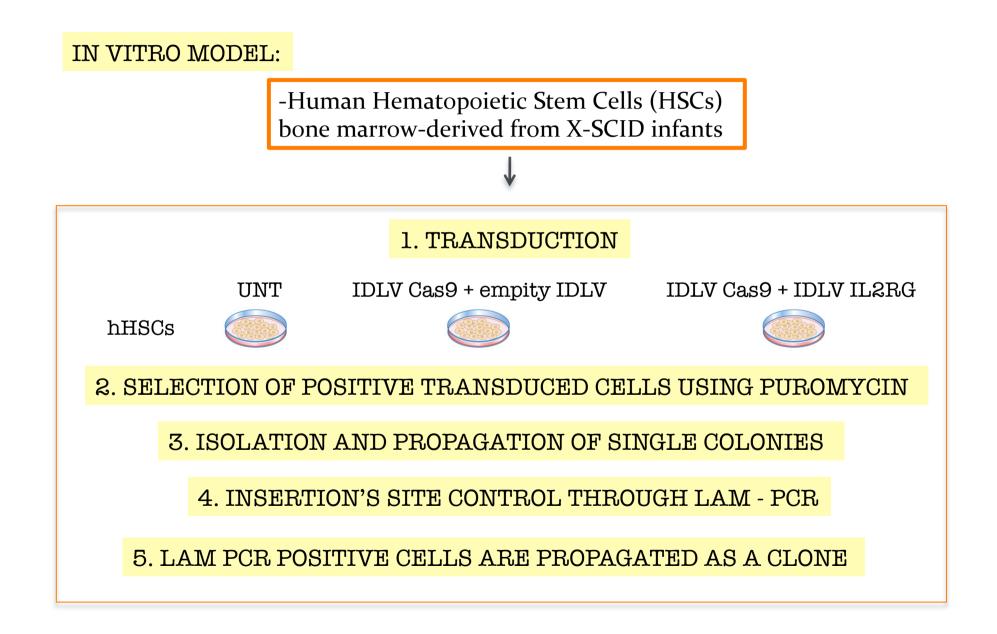
- 1. Expression plasmid
- 2. Packaging plasmid
- 3. Pseudotyping plasmid
- 4. Plasmid containing *rev* gene.

Ultra – centrifugation to obtain supernatant containing the lentiviral particles.

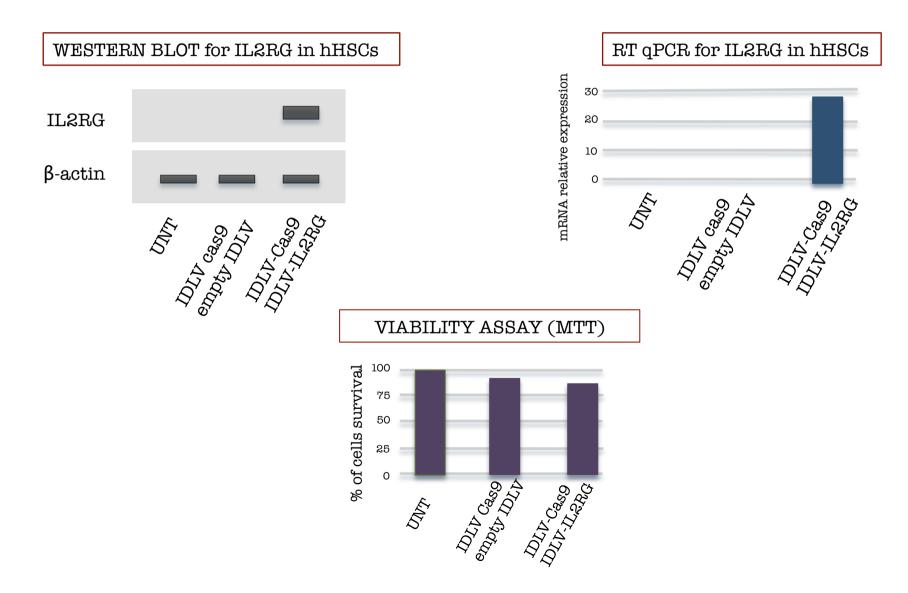

p24ELISA assay to estimate the titer of the lentiviral vectors within supernatant.

 $Adapted \ from \ http://www.alstembio.com/virus-production/Lentiviral-packaging-mix$

AAVS1 Locus as "Safe Harbor"


AAVS1 is a common integration site of the human non pathogenic adenoassociated virus, found between exon 1 and intron 1 of protein phosphatase 1 regulatory subunit 12C (PPP1R12C) gene, located in chromosome 19.

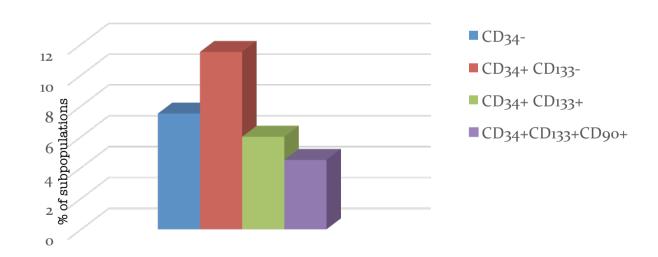
Different studies showed the **safe**, **stability and robustness of transgene expression** after insertion in *AAVS1* of human stem cells (iPSs, hHSCs).


Transgene's insertion at the AAVS1 locus revealed **no upregulation** in gene expression of flanking genes.

IN VITRO EXPERIMENT

IN VITRO EXPERIMENT

IL2RG EXPRESSION CHECK


IN VITRO EXPERIMENT

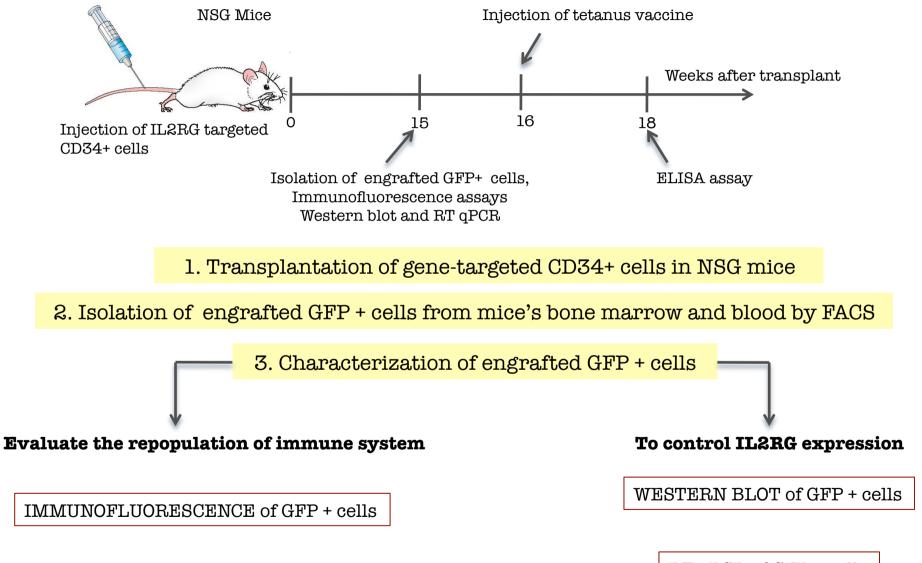
FUNCTIONAL ASSAY

Induction of hHSCs' differentiation adding specific growth and differentiation factors.

FLOW CYTOMETRY

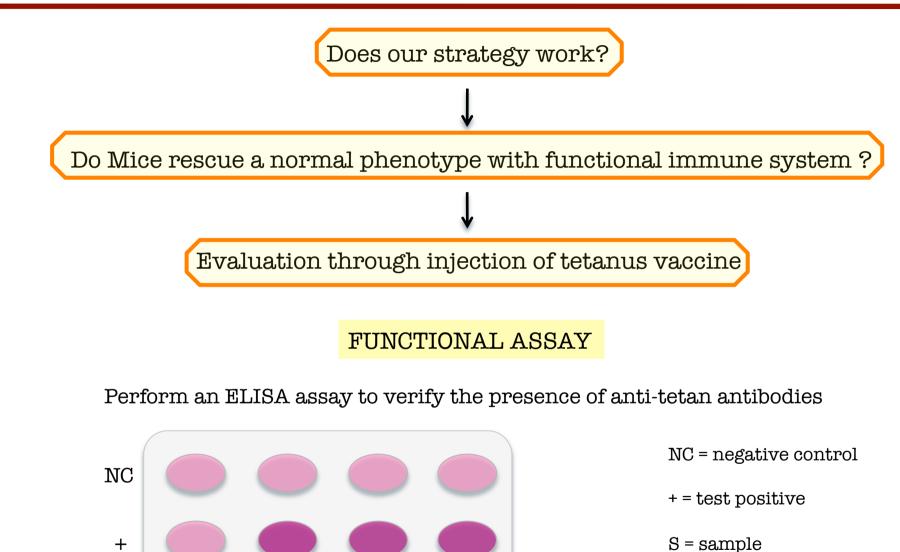
using different surface markers to evaluate the presence of mature differentiated subtypes of lymphocytes

IN VIVO EXPERIMENTS


IN VIVO MODEL:

NOD SCID gamma (NSG) Mice

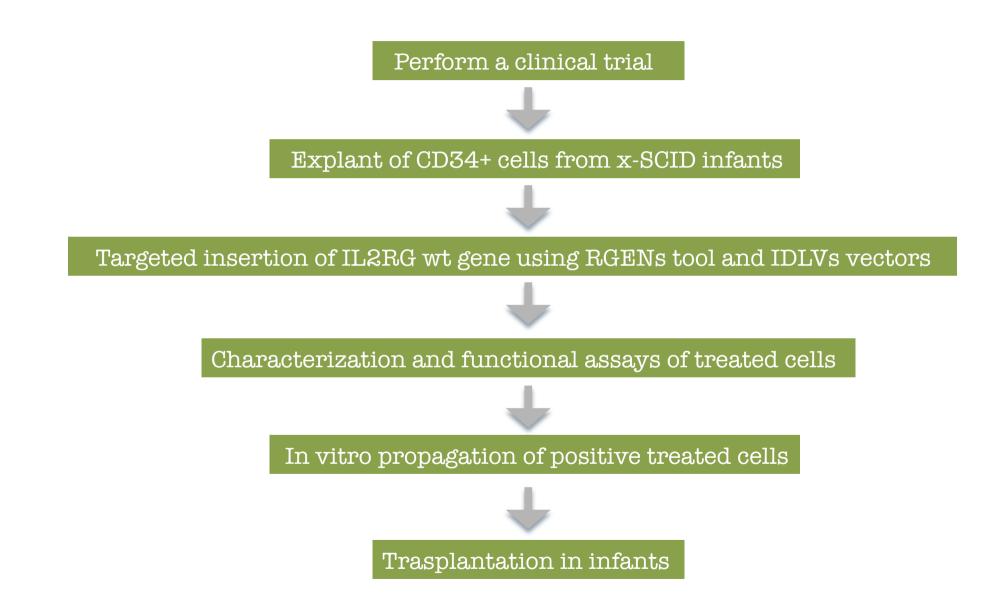
- Albino, viable, fertile, normal size, do not display any abnormalities
- Lack mature T cell, B cells and NK cells
- Deficient in cytochine signaling
- Abnormal immune system organ morphology
- Resistant to lymphoma development
- Support engraftment of hHSCs
- Median survival time 89 weeks



IN VIVO EXPERIMENTS

RT qPCR of GFP + cells

IN VIVO EXPERIMENTS


 S_3

Ś

 \tilde{S}

UNT = untreated

FUTURE PERSPECTIVES

COSTS & TIME

• LENTI – Smart TM NIL (InvivoGen) + Additional materials *	
• LAM PCR:	
- Taq DNA polymerase (Qiagen)*	
- dNTPs (Fermentas)*	
- Oligonucleotides and primers MWG Biotech*	
- Magnetic particles: Dynabeads M280 Streptavidin (Dynal) (Lifetechnologies)	452 \$
- Kilobase binder kit (Dynal) (Lifetechnologies)	417 \$
- Klenow polymerase (Roche)	109 \$
- Hexanucleotide mixture (50 reactions) (Roche)	88 \$
- Restriction endonuclease(s) and incubation $ ext{buffer}(s)$ (New England Biolabs)*	
- Fast - Link DNA ligation kit (Epicentre)	142 \$
- T4 DNA Ligase (New England Biolabs)	62 \$
- Spreadex EL1200 precast gel (Elchrom Scientific)*	
- QIAquick PCR purification kit (Qiagen)*	
- DNA extraction kit (Qiagen)	
• TaqMan (Applied Biosystems) 111\$	
• NSG Mice (The Jackson Laboratry)	161\$ per mouse
• Stabulation	700 \$ per month
• Tetanus' Vaccine (Sanofi Pasteur MSD)	10,20 \$ per dose
• ELISA Kit for Tetan's Vaccine (BioCompare)	247 \$
• Anti – IL2RG Antibody host mouse (Sigma-Aldrich)	386 \$
• Secondary Anti – Mouse Antibody (Sigma-Aldrich)	237 \$
\cdot Antibody for specific sufrace markers of HSCs Cells and their progeny host rabbit (Bioss) *	
• Secondary Anti – Rabbit antibody (Pierce)*	
• FACS Kit (BD Bioscience)*	

• MTT Cell Proliferation Assay Kit (1000 Assays) (Life technologies)*

TIME: predict 30 months with an amount of 20000/30000\$ the possibility of collaboration with other laboratories could decrease costs

*Contact distributor

REFERENCES

- RNA-Guided Human Genome Engineering via Cas9, Prashant Mali et Al., Science. 2013 February 15; 339(6121): 823-826. doi:10.1126/science.1232033.
- Robust, Persistent Transgene Expression in Human Embryonic Stem Cells Is Achieved with AAVS1-Targeted Integration Joseph R. Smith et Al. STEM CELLS 2008;26:496–504.
- Gene Therapy of Human Severe Combined Immunodeficiency (SCID)-X1 Disease, Marina Cavazzana-Calvo et al. Science 288, 669 (2000).
- Targeted genome editing in human repopulating haematopoietic stem cells. Pietro Genovese, Luigi Naldini et Al., 10.1038/ nature13420 (2014).
- 20 years of gene therapy for SCID. Alain Fischer, Salima Hacein-Bey-Abina & Marina Cavazzana-Calvo. 2010 Nature America, Inc.
- BONE MARROW (HEMATOPOIETIC) STEM CELLS. Jos Domen, Amy Wagers and Irving L. Weissman, in Stem Cell Information. Bethesda, MD: National Instituite of Health, U.S. Department of Health and Human Services, 2011.
- Design and Potential of Non-Integrating Lentiviral Vectors. Aaron Shaw and Kenneth Cornetta, Biomedicines 2014, 2, 14-35; doi: 10.3390/biomedicines2010014.
- Hematopoietic Stem Cell Expansion and Gene Therapy, Korashon Lynn Watts et Al. Cytotherapy. 2011 November ; 13(10): 1164-1171. doi:10.3109/14653249.2011.620748.
- Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery . Angelo Lombardo et Al., 28 October 2007; doi:10.1038/nbt1353

- Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1, Salima Hacein-Bey-Abina et Al., The Journal of Clinical Investigation, Volume 118 Number 9 September 2008.
- Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Ste´ phanie Philippe et Al., 17684–17689 PNAS November 21, 2006 vol. 103 no. 47
- Site-specific integration and tailoring of cassette design for sustainable gene transfer. Angelo Lombardo, Luigi Naldini et Al., DOI:10.1038/NMETH.1674, 2011 Nature America.
- Targeted transgene insertion into the AAVS1 locus driven by baculoviral vector-mediated zinc finger nuclease expression in human-induced pluripotent stem cells, Felix Chang Tay et Al.. J Gene Med 2013; 15: 384–395.
- Utilization of the AAVS1 safe harbor locus for hematopoietic specific transgene expression and gene knockdown in human ES cells. Amita Tiyaboonchai et Al., Stem Cell Research (2014) 12, 630-637.
 - CRISPR-Cas systems for editing, regulating and targeting genomes, Jeffry D Sander & J Keith Joung, March 2014; doi: 10.1038/nbt.2842.
 - A guide to genome engineering with programmable nucleases, Hyongbum Kim and Jin-Soo Kim doi:10.1038/nrg3686, Published online 2 April 2014.