Cancer of the rectum colon: high FeCl3 content inhibits the genotoxic activity colibactin produced by E.Coli strains.

Professoressa I.Saggio. 2020\2021

> Appolloni Davide Mariani Lorenzo Ranieri Federica

RECTAL COLON CANCER

Colorectal cancer (CCR) is one of the most frequent neoplasms in Italy. It is very present in developed countries, where more than 65% of cases are found.

Ran k	Men	Women
1°	Lung (27%)	Udder (17%)
2°	Rectum Colon(10%)	Rectum Colon (12%)
3°	Prostate (8%)	Lung (11%)
4°	Liver (7%)	Pancreas (7%)

It can be caused by both intrinsic and extrinsic factors, such as:

- □ Bad power supply;
- □ Smoking and alcohol;
- \Box Age;
- Genes Factors;
- □ Intestinal strains of E.Coli.

PKS island features

PKS island codify for many proteins having a different role in the production and activation of the COLIBACTIN;
 The COLIBACTIN transforms healthy stem cells into cancer stem cells.

HOW THE COLIBACTIN ACT INSIDE HOST CELLS?

ORGANOID'S FEATURES

□ 3D *in vitro* culture systems;

- □ Can be developed from pluripotent stem cells and adult stem cells;
- \Box Used to study multiple organs as intestine, brain etc;
- □ Used in multiple clinical applications including **host**-microbe interactions;
- □ The complex interplay between microbes (bacteria, parasites, viruses) and the host epithelium have been dissected using organoids derived from intestine.

ABOUT 3D PRODUCTION.....

Intestinal tissue biopsy;
Pick stem cells from tissue;
Put the stem cells inside grow medium; *In vitro* proliferation

AIM OF PROJECT

Absence of FeCl3

Presence of FeCl3

Regulation of Colibactin by using Iron:

- In absence of FeCl3 Fur bind the promoter of clbA gene and the transcription is activated.
- In presence of FeCl3 Fur can't bind the promoter of clbA gene and the transcription is repressed;

IN VITRO EXPERIMENT

promoter of clbA incubated with increasing amount of Fur protein in absence of FeCl3 1) Probe promoter of clbA 2-7) Probe promoter of clbA incubated with increasing amount of Fur protein in presence of FeCl₃

Regulation of Colibactin production by FUR protein in absence of the FeCl3

Regulation of Colibactin production by FUR protein in presence of the FeCl3

HOW?

IN VIVO EXPERIMENT

IN VIVO RESULTS

Absence of the FeCl3

7 days

Presence of the FeCl3

21 days

The FeCl3 is involved in the expression of the E.Coli

colibactin

14 days from the infection

21 days from the infection

14 days from the infection

21 days from the infection

CONCLUSIONS

The Fur protein, in presence of iron, doesn't able to bind the promoter of clbA gene causing the repression of colibactin biosynthesis

The presence/absence of Iron is involved to regulation of clbA protein by using Fur protein. The iron cause the moludation od colibactin biosynthesis by a mechanism based on *REGULATION BY METABOLITE*.

Materials and costs

□Ferric chloride solution (Sigma Aldrich) 36,90€ per 100g bottle
□Escherichia coli VitroidsTM (Sigma Aldrich) 62,00€ per sample
□Emsa kit (Thermo ScientificTM 20148)518,00€
□Chromatographic column (GE Healthcare) 500€
□Plates (Sigma Aldrich) 100€
□Mice: from 4 € to 20 €
□GFP yeast reporter plasmid (sigma Aldrich) 326€
□Costs of lab manteinance and materials

REFERENCES

- Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020) .Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A. et alTronnet S, Garcie C, Brachmann AO, Piel J, Oswald E, Martin P.
- High iron supply inhibits the synthesis of the genotoxin colibactin by pathogenic Escherichia coli through a non-canonical Fur/RyhB-mediated pathway. Pathog Dis. 2017 Jul 31;75(5). doi: 10.1093/femspd/ftx066. PMID: 28637194
- Applications of organoids for cancer biology and precision medicine. Nat Cancer 1, 761–773 (2020). Lo, YH., Karlsson, K. & Kuo, C.J.
- The Colibactin Genotoxin Generates DNA Interstrand Cross-Links in Infected Cells Nadège Bossuet-Greif, Julien Vignard, Frédéric Taieb, Gladys Mirey, Damien Dubois, Claude Petit, Eric Oswald, Jean-Philippe Nougayrède mBio Mar 2018, 9 (2) e02393-17 Kretzschmar, K.
- □ Cancer research using organoid technology. J Mol Med (2020).
- Colibactin: More Than a New Bacterial Toxin. Tiphanie Faïs, Julien Delmas, Nicolas Barnich, Richard Bonnet, Guillaume Dalmasso Toxins (Basel) 2018 Apr; 10(4): 151. Published online 2018 Apr 10. doi: 10.3390/toxins10040151
- Structure and bioactivity of colibactin . Kevin M. Wernke, Mengzhao, Alina Tirla, Chung Sub Kim, Jason M. Crawford, Seth B. Herzon.
- The human gut bacterial genotoxin colibactin alkylates DNA. Matthew R Wilson , Yindi Jiang, Peter W Villalta, Alessia Stornetta, Paul D Boudeau, Andrea Carrà, Caitlin A Brennan, Eunyoung Chun, Lizzie Ngo, Leona D Samson, Bervin P Engelward, Wendy S Garrett, Silvia Balbo, Emily P Balskus