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Telomere length and predominant clinical manifestations

Patients with dyskeratosis congenita (DC) suffer from stem cell failure in highly proliferative
tissues. DKC1 gene is the gene responsible for the X-linked Dyskeratosis Congenita.

Table 1 Telomere erosion and human disease

Telomerase mutations as
genetic risk factors

Telomerase mutations as
genetic determinants

Characteristics High penetrance
Childhood onset disease
Congenital clinical

manifestations

Low penetrance
Adult onset disease
Single or multiple organs
Disease Dyskeratosis congenita Aplastic anemia
Lung fibrosis
Liver cirrhosis

Telomere syndromes

Carulli et al., 2014
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The dysckerin complex is a protein
encoded by the gene DKC1. This
cause a selective defect in the
translation of a subgroup of internal
ribosome entry site (IRES)—containing
cellular mRNAs.

M. Bessler, Hong-Yan Du, Baiwei Gu, P. J.Mason, 2007



AlMs of the gene therapy
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Patient affected by liver disease

Improve life expectations

The short telomere phenotype in children and young adults represents more severe disease. Bone marrow
failure is its most common first manifestation, and stem cell transplantation alleviates this condition pointing
to a stem cell-autonomous defect in this compartment.
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ISOLATION OF CD34+

« BONE MARROW SAMPLE FOR THE ISOLATION OF CD34+ FRACTION with CliniMACS® System
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BM blood cell = 10.000/pL. CD34+

BMCs were sampled for cell counts and immunophenotyping by
flow cytometry prior to processing.

Patient affected by DC

o ©

*.° —bl

Fluorescent and
magnetic labeling

o

H'

=

Magnetic separation
using MACS columns

Elution of
CD34 positive

I
1
i
] A

CD34

A J



COLONIES OF CD34+

The percentage of CD34+ and viability were determined by flow cytometry analysis,
used to calculate total CD34+ cells number.
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CRISPR-Cas9 to correct DCK1 mutation

gRNA and Donor design
TERT TCAB1 DKC1_A353V (1058Cto T)
s P704S 2 Exon11 of DKC1 (WT) . DKC1
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CRISPR gRNAs were inserted into the MLM3636 plasmid and . 1,058'C>'|;/3;53CV

cotransfected with a plasmid carrying Cas9.

Sequencing traces confirming genome modification =2




CD34+ cultured in G-CSF
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For 12 days, cells were cultured in G-CSF, washed
and placed on superfrost slides, to stimulate the
survival and the proliferation.

G-CSF (ng/o 6 cells/day}



TRANSPLANT

Cellular fraction containing CD34+ cells genetically
modified with a RECOMBINANT pAD ADENOVIRAL

2 x 10°/mL
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ADVANTAGES:

Large packaging capacity (~7.5 kb)
High levels of expression that can
often be observed within 24 hours
Does not integrate into host genome
Infects most cell types with nearly

100% efficiency
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VECTOR containing the DNA sequence that encodes
for DKC1 .
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NORMAL LIVER R E S U LTS
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Telomere length quantified by Telomere Repeat Fragment Analysis (TRF).
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Materials & budget

DKC1 mouse models

20€ x 10 models = 200,00 €

Liver cirrhosis mouse + WT mouse models

20€ x 30 models = 600,00 €

CliniMACS® System TS 500 for Research Use 1.650,00 €
CRISPR-Cas9 Mutation Detection Kit 160,00 €
G-CSF Recombinant Protein 500,00 €
pAD Adenoviral vector 1.200,00 €
Additional costs (results analysis, markers,...) 500,00 €
Salary of researchers 3.500,00 €
TOT. | 8.310,00 €

Isolation and

4 months CRISPR gene 6 months

editing

Proliferation
and transplant

1 year

Pitfalls

May trigger a substantial immune response in vivo
Transient expression

Cloning can be challenging due to large genome size
Risk of hepathic tumor

Solutions

Correction of liver disease mutation linked to
telomeropathies

In vivo research 2 years To be continued...
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