GENOMICA
CLONAGGIO E CARATTERIZZAZIONE MOLECOLARE DI GENOMI
La possibilità di conoscere i geni deriva dalla capacità di manipolarli:

- isolare un gene (enzimi di restrizione)
- clonaggio (amplificazione) vettori
- sequenziamento
- funzione
1. Alcuni enzimi di restrizione, come ad esempio HindIII, tagliano il DNA a scalino,...

2. ...dando origine a estremità a singolo filamento coesive (adesive).

3. Altre endonucleasi di restrizione, quale PvuII,...

4. ...scindono entrambi i filamenti del DNA in maniera simmetrica, producendo terminali piatti.

(b)

5. Le molecole di DNA scisse col medesimo enzima di restrizione presentano estremità adesive complementari che si appaiano se si miscelano insieme i frammenti.

(a) DNA lineare

Digestione con HindIII a livello di quattro siti

Con un frammento di DNA lineare, il numero dei frammenti generati supera di uno il numero dei siti di restrizione.

(b) DNA circolare

Digestione con HindIII a livello di quattro siti

Con un frammento di DNA circolare, il numero dei frammenti ottenuti è uguale a quello dei siti di restrizione.
(a) Taglio del DNA con enzimi di restrizione
1. I frammenti di DNA sono collocati nei pozzetti di un gel di agarosio
2.Attraverso il gel è fatta passare una corrente elettrica...

(b) Migrazione dei frammenti
Frammenti di DNA di diverse dimensioni
3. ...e i frammenti di DNA migano verso il polo positivo.
4. I frammenti più piccoli si spostano più velocemente rispetto a quelli grossi.

(c) Gel dopo l'elettroforesi
Pozzetti
Frammenti di DNA di grosse dimensioni
Frammenti di DNA piccoli

(d) Gel colorato
5. Il gel viene colorato con una sostanza specifica per gli acidi nucleici...
6. ...e visualizzato alla luce UV. Sul gel, i frammenti di DNA appaiono come bande studenti.
Il gene o la sequenza genica isolata deve essere inserita all’interno di un vettore che permette l’amplificazione (aumento del numero di copie) della sequenza stessa, in modo che il gene diventi manipolabile.
(a) Clonaggio per restrizione

1. Il plasmide e il DNA esogeno sono tagliati dallo stesso enzima di restrizione, in questo caso EcoRI.
2. Le estremità generate complementari.
3. Quando vengono mescolati insieme, le estremità si appaiano, unendo il DNA esogeno e il plasmide.
4. Le interazioni ne legami tra zuccheri e fosfati sono chiusi dalla DNA ligasi.

(b) Clonaggio mediante tailing

1. Il plasmide e il DNA esogeno sono scissi da un enzima di restrizione.
2. Se sono generate estremità caotiche, queste sono rimesse da un enzima che digerisce il DNA a singolo filamento.
3. Le estremità caotiche vengono aggiunte come DNA ligasi di T4, che formano catene di connessione.
4. Allo stesso tempo, i frammenti di DNA esogeno vengono tagliati dall'enzima di restrizione e poi uniti con DNA ligasi.

(c) Clonaggio mediante frammenti di connessione

1. Il DNA esogeno viene scisso da un enzima di restrizione, a cui vengono aggiunti frammenti di DNA contenenti un sito di restrizione.
2. Alla estremità del DNA esogeno vengono aggiunti frammenti di DNA, che contengono siti di restrizione.
3. I siti di restrizione presenti nel DNA esogeno vengono tagliati con l'enzima di restrizione.
4. Con sequenza la restrizione di DNA esogeno con il plasmide.
5. Le estremità caotiche complementari del plasmide e del DNA esogeno vengono chiusi mediante DNA ligasi.
6. Le interazioni ne legami tra zuccheri e fosfati sono chiuse dalla DNA ligasi.
COSTRUZIONE DI VETTORI DI CLONAGGIO

- **Plasmidi** (fino a 10 kb)
- **Vettori fagici** (fino a 15 Kb)
- **Vettori cosmidici** (fino a 45 Kb)
- **BAC** (basati sul fattore F di E.Coli, inserto fino a 300 Kb)
- **PAC** (basati sul genoma fagico P1, fino a 120 Kb)
- **YAC** cromosomi artificiali di lievito (inserto fino a 2 Mb)
Proprieta’ di un vettore di clonaggio

1. In primo luogo, un vettore di clonaggio deve contenere un’origine di replicazione riconosciuta nella cellula ospite in modo che venga replicato unitamente al DNA che porta.

2. Secondariamente, dovrebbe presentare dei marcatori selezionabili, ossia dei tratti che consentono alle cellule contenenti il vettore di venire selezionate oppure identificate.

3. In terzo luogo, un vettore di clonaggio necessita di un singolo sito di taglio per uno o più enzimi di restrizione.
VETTORE PLASMIDICO

- si replica autonomamente rispetto al cromosoma batterico
- possiede un polylinker
- possiede un marcatore di selezione
1. Il DNA esogeno viene inserito nel centro del gene lacZ.
2. I batteri lacZ vengono trasformati dal plasmide e piastrati su terreno contengente ampicillina.
3. I batteri che non contengono il plasmide non si svilupperanno.
4. I batteri che mostrano il plasmide intatto produrranno β-galattosidasi, che sciende l'X-gal colorando di blu le colonie.
5. I batteri contenenti il plasmide ricombinante non sintetizzano la β-galattosidasi; le loro colonie rimarranno bianche.

Conclusione: Una colonia bianca è formata da batteri che portano il plasmide ricombinante.
Vettore d’espressione

1. I vettori di espressione contengono sequenze di operoni che consentono di trascrivere e tradurre il DNA inserito al loro interno.

2. Essi comprendono altresì sequenze che regolano, attivandolo o inattivandolo, il gene desiderato.

- Operatore (O)
- Sequenze di promotori batterici (P)
- Siti di restrizione
- Sequenza di terminazione della trascrizione
- Sito di legame al ribosoma
- Sequeenze di inizio della trascrizione
- Repressore che codifica per il gene e che si lega a O regolando P
- Marcatore genetico selezionabile (per esempio una resistenza a un antibiotico)
Vettori fagici e cosmidi
Alta afficienza di infezione e quindi di trasferimento del gene clonato all’interno della cellula batterica
YAC, cromosomi artificiali di lievito o minicromosomi, inseriti nelle cellule attraverso microiniezione o liposomi, ospitano fino a 500 Kb di DNA.
BAC
cromosomi batterici artificiali
Libreria genomica (genoteca) o libreria di c-DNA?
Genoteca
o libreria genomica

- amplificare frammenti o geni
- identificare geni
- determinare nuovi geni
- contiene geni nella loro forma nativa con sequenze regolative ed introni
- ogni vettore porta un pezzo del genoma, e tutti i vettori insieme rappresentano tutto il genoma
Genoteca di c-DNA: genoteca di sequenze espresse

-ogni vettore porta un c-DNA, quindi un trascritto genico, e tutti i vettori insieme rappresentano tutto il trascrittoma
Alla ricerca del gene

Screening della libreria
Caso 1. Si conosce la funzione del gene ma non la sequenza genica ne’ la proteina

IDENTIFICAZIONE DEI CLONI PER COMPLEMENTAZIONE

La complementazione funzionale è il processo mediante il quale una particolare sequenza di DNA è in grado di compensare la mancanza di una funzione in una cellula mutante, ripristinando così il fenotipo Wild-type.
Yeast to human: rescue

Yeast cells with temperature-sensitive CDK gene
Plate at 36°C.

Transform with human cDNA library in yeast CEN vector. Plate at 36°C.

Isolates CEN vector containing human CDK gene

No colonies (only transformed colonies can grow)

CEN vector containing human CDK gene

CDK=chinasi ciclina dipendente
Poiche' conosco le sequenze a monte e a valle del pezzo di genoma clonato, mi posso costruire dei primers che permettono di amplificare e sequenziare l'inserto.
Caso 2: se e' nota la sequenza del gene posso costruire una sonda di DNA / RNA che andra' ad ibridare con la sequenza genica

Caso 3: non conosco la sequenza genica ma conosco la sequenza aminoacidica anche qui costruisco una sonda a DNA/RNA, tenendo conto della degenerazione del codice genetico
Porzione nota della sequenza amminoacidica

Possibili codoni

Gly Val Arg Met Asp Trp Asn Tyr Glu Pro Leu Ser Thr Trp Glu Met Asn Gln Trp Phe Val Arg Ala

GGA GGC GGU GCC AUG GAC UGG UGU AUG AAG GU AAG UAC AAA CCA UUC AUG UGG UAG AUG AAA GAA UAG

UGG UGU CCA AUG UUG AUG AAG UAU AAA UAC AAA CAA UGG UAG AUG AAA GAA UAG

AUGGA^GGAA^UA^GA^G (2×2×2×2 = 16 sequenze possibili)

UGG^A^GGA^AUGAA^C^CA^U^G (2×2×2 = 8 sequenze possibili)

Questa sequenza dà una sonda migliore poiché vi è minore degenerazione che nella sequenza a sinistra.
SAGGI DI IBRIDAZIONE
STANDARD E SAGGI INVERSI

• STANDARD
 COLONY-BLOT
 SOUTHERN BLOT
 NORTHERN BLOT
 IBRIDAZIONE IN SITU SU TESSUTO O CROMOSOMI

• INVERSI (MARCATURA DEL TARGET)
 MICROARRAY DI DNA
 MICROARRAY DI OLIGONUCLEOTIDI
L’IMPIEGO DI SONDE BASATE SU ACIDI NUCLEICI E’ UNO STRUMENTO FONDAMENTALE PER LA GENETICA MOLECOLARE

SI SFRUTTA LA CAPACITA’ DELLE MOLECOLE DI ACIDO NUCLEICO A SINGOLO FILAMENTO DI FORMARE MOLECOLE A DOPPIO FILAMENTO

IBRIDAZIONE
I SAGGI PIU’ COMUNI DI IBRIDAZIONE PREVEDONO L’USO DI SONDE

SONDE: MOLECOLE DI ACIDO NUCLEICO A SINGOLO O DOPPIO FILAMENTO MARcate
sequenza di DNA genomico o di c-DNA

Sonda (probe) marcata di 15-100 nt
A CHE SERVONO I SAGGI DI IBRIDAZIONE?

- PER INDIVIDUARE LA PRESENZA DEL GENE CHE SI STA CERCANDO

- PER OSSERVARE LA PRESENZA DI UN TRANSGENE INSERITO NEI CROMOSOMI (PRESENZA O ASSENZA)

- PER OSSERVARE TRASLOCAZIONI CROMOSOMICHE

- PER OSSERVARE LE DIMENSIONI DEL TARGET (NON OSSERVABILI CON ALTRE TECNICHE)

- PER OSSERVARE LA COLLOCAZIONE SUBCROMOSOMICHA O NEL TESSUTO O NELLA CELLULA DEL TARGET
COLONY-BLOT

1. Hybridize with labeled probe
2. Wash
3. Autoradiography

- Identify positive colony and pick into liquid culture
- Place membrane on top of agar containing separated bacterial colonies
- Grow in liquid culture
- Invert membrane and lay over new agar surface; allow colonies to regenerate on top of filter
- Replica filter on new agar
- Remove membrane with attached colonies; soak in successive solutions
- (a) Denaturing
- (b) Neutralize
- (c) Wash
- (d) Dry/fix DNA

X-ray film

Bacterial DNA fixed on membrane
Chromosome walking

Il risultato dello screening di una libreria di cDNA ma, specialmente di una libreria genomica è quasi sempre un clone che non comprende l’intero gene. Per isolare il gene intero si utilizza una tecnica chiamata chromosome walking. Questa tecnica presuppone che la libreria sia formata da cloni parzialmente sovrapposti tra loro. La tecnica consiste nell’utilizzare il cDNA isolato come sonda con cui si sonda una nuova libreria (di solito genomica). Il risultato di questo screening dovrebbe dare dei nuovi cloni una parte dei quali si estenderà ulteriormente verso il 5’, il 3’ o entrambe le direzioni. I cloni più esterni saranno nuovamente utilizzati come sonde per isolare nuovi cloni che si estendono al 5’ o al 3’ ecosì via fino ad isolare l’intero gene.
1. La digestione parziale del DNA produce frammenti sovrapposti che vengono clonati nei batteri.

2. I doni ad ampio inserto sono analizzati per la presenza di marcatori o siti di restrizione sovrapposti.

3. Ciò consente di assemblare i doni ad ampio inserto in contig, ossia tratti continui di DNA.

4. Un sottogruppo di doni sovrapposti, che coprono l'intero cromosoma, viene selezionato e frammentato; le porzioni risultanti sono poi donate.

5. Ognuno di questi doni a piccolo inserto viene sequenziato e la sovrapposizione delle sequenze è usata per assemblarli nell'ordine corretto.

6. La sequenza finale è ricostruita unendo le sequenze dei doni di grandi dimensioni e riempiendo tutti gli spazi vuoti.
1. Si sfrutta una sonda complementare all’estremità del clone A al fine di rilevare il clone B sovrapposto.

2. Si utilizza una sonda complementare all’estremità del clone B per individuare il clone C sovrapposto.

3. Si impiega una sonda complementare all’estremità del clone A allo scopo di trovare il clone D sovrapposto e contenente il gene di interesse.

Conclusione: Preparando delle sonde complementari a zone di sovrapposizione tra i frammenti clonati di una libreria genomica, è possibile connettere un gene di interesse a un gene a esso associato e mappato in precedenza.
La reazione di amplificazione del DNA o PCR

1. Il DNA viene scaldato a 90-100 °C per separare i due filamenti.
2. Il DNA viene raffreddato velocemente sino a 30-65 °C, in modo da consentire ai corti inneschi a singolo filamento di appaiarsi alle sequenze a essi complementari.
3. La soluzione viene riscaldata a 60-70 °C, e la DNA polimerasi sintetizza nuovi filamenti,…
4. …dando origine a due nuove molecole di DNA a doppio filamento.
5. L’intero ciclo viene ripetuto.
6. Ogni volta che ciò avviene, la quantità di DNA bersaglio raddoppia.